Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 99

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Rail DRAGON: Long-reach Bendable Modularized Rail Structure for Constant Observation inside PCV

Yokomura, Ryota*; Goto, Masataka*; Yoshida, Takehito*; Warisawa, Shinichi*; Hanari, Toshihide; Kawabata, Kuniaki; Fukui, Rui*

IEEE Robotics and Automation Letters (Internet), 9(4), p.3275 - 3282, 2024/04

To reduce errors in the remote control of robots during decommissioning, we developed a Rail DRAGON, which enables continuous observation of the work environment. The Rail DRAGON is constructed by assembling and pushing a long rail structure inside the primary containment vessel (PCV), and then repeatedly deploying several monitoring robots on the rails to enable constant observation in a high-radiation environment. In particular, we have developed the following components of Rail DRAGON: bendable rail modules, straight rail modules, a basement unit, and monitoring robots. Concretely, this research proposes and demonstrates a method to realize an ultralong articulated structure with high portability and workability. In addition, it proposes and verifies the feasibility of a method for deploying observation equipment that can be easily deployed and replaced, while considering disposal.

Journal Articles

Development of a simulator for operator proficiency training for seafloor exploration by remotely operated vehicle

Kamewari, Ryusei*; Fujishima, Yusuke*; Kawabata, Kuniaki; Suzuki, Kenta; Sakagami, Norimitsu*; Takemura, Fumiaki*; Takahashi, Satoru*

Proceedings of the IUTAM Symposium on Optimal Guidance and Control for Autonomous Systems 2023 (IUTAM Bookseries No.40), p.85 - 101, 2024/01

JAEA Reports

Annual report for FY2021 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2021 - March 31, 2022)

Akiyama, Yoichi; Shibanuma, So; Yanagisawa, Kenichi*; Yamada, Taichi; Suzuki, Kenta; Yoshida, Moeka; Ono, Takahiro; Kawabata, Kuniaki; Watanabe, Kaho; Morimoto, Kyoichi; et al.

JAEA-Review 2023-015, 60 Pages, 2023/09

JAEA-Review-2023-015.pdf:4.78MB

Naraha Center for Remote Control Technology Development (NARREC) was established in Japan Atomic Energy Agency to promote a decommissioning work of Fukushima Daiichi Nuclear Power Station (Fukushima Daiichi NPS). NARREC consists of a Full-scale Mock-up Test Building and Research Management Building. Various test facilities are installed in these buildings for the decommissioning work of Fukushima Daiichi NPS. These test facilities are intended to be used for various users, such as companies engaged in the decommissioning work, research and development institutions, educational institutions and so on. The number of NARREC facility uses was 84 in FY2021. We participated booth exhibitions and presentations on the decommissioning related events. Moreover, we also contributed to the development of human resources by supporting the 6th Creative Robot Contest for Decommissioning. As a new project, "Narahakko Children's Classroom" was implemented for elementary school students in Naraha Town. This report summarizes the activities of NARREC in FY2021, such as the utilization of facilities and equipment of NARREC, the development of remote-control technologies for supporting the decommissioning work, arrangement of the remote-control machines for emergency response, and training for operators by using the machines.

JAEA Reports

HAIROWorldPlugin operation manual (Revised edition)

Suzuki, Kenta; Yashiro, Hiroshi; Kawabata, Kuniaki

JAEA-Testing 2021-004, 125 Pages, 2022/03

JAEA-Testing-2021-004.pdf:6.1MB

This report is updated HAIROWorldPlugin Operation Manual (JAEA-Testing 2020-009). Our motivation is to develop a robot simulator based on Choreonoid for technological development to contribute the decommissioning work at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings, Inc. Choreonoid is an open source simulator which calculates the behavior of robots. We are developing HAIROWorldPlugin which is an extended function of Choreonoid for providing a virtual decommissioning experience. In the latest HAIROWorldPlugin, the several functions were additionally implemented. In particular, we implemented new functionalities: logging a collision status between a robot and an object, showing and logging a status of the joystick input signals, generating an environmental object model (pipe, grating, and slope), bookmarking an often used simulation settings, and recording histories of a simulation settings. In addition, this report describes the installation of the plugin to Choreonoid on Ubuntu20.04-LTS and parameter settings of the plugin by presenting snapshots of operation windows.

JAEA Reports

Test methods for robots for nuclear emergency response and decommissioning; Test for maneuvering robot arm over an obstacle (JAEA-TM-0006)

Yamada, Taichi; Kawabata, Kuniaki; Abe, Hiroyuki*

JAEA-Technology 2021-033, 18 Pages, 2022/03

JAEA-Technology-2021-033.pdf:1.58MB

This report describes the test procedures for evaluating performances involved in robot arm maneuvering of remotely operated robot utilized for nuclear emergency responses and decommissioning. After the accident at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company Holdings Inc. (FDNPS) occurred, remotely operated robots have been deployed and utilized in the response tasks. Such post-accident work experience and lessons learned are very valuable for developing the robots in the future. Therefore, we were motivated to develop the test methods for performance evaluation of the robot by referring with such experiences and lessons. In the response and the decommissioning tasks, robots with a robot arm were deployed for door opening, removal objects, decontamination and cleanup and so on. Some of these tasks were conducted in an environment with obstacles by robot arms maneuvering. This report describes test procedures for quantitatively evaluating the performances which are for maneuvering involving in robot arm to approach target objects in an environment with obstacles. A typical course layout and the demonstration of test are also illustrated for the references.

JAEA Reports

Test methods for robots for nuclear emergency response and decommissioning; Tests for moving performances of robots (JAEA-TM-0004 and JAEA-TM-0005)

Kawabata, Kuniaki; Yamada, Taichi; Abe, Hiroyuki*

JAEA-Technology 2021-021, 30 Pages, 2021/11

JAEA-Technology-2021-021.pdf:2.55MB

This report describes the test procedures for performance evaluation of remotely operated robot utilized for nuclear emergency responses and decommissioning that provide to compare among the robot's performances quantitatively and relatively. After the accident at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company Holdings Inc. (FDNPS) occurred, remotely operated robots have been deployed and utilized in the response tasks. Such post-accident work experiences and lessons learned are very valuable for developing the robots in the future. Therefore, we were motivated to develop the test methods for performance evaluation of the robot by referring with such experiences and lessons. In recent decommissioning tasks, reconnaissance on the distribution and status of nuclear fuel debris inside the Primary Containment Vessel (PCV) have been carried out. The insertion and deployment of robots into PCV were carried out through a penetration pipe with small diameter to prevent the scattering of radioactive materials. According to the authors' survey on such works have carried out in Units 1 and 2 of FDNPS, in order to carry out the reconnaissance work by the robot deployed into the PCV, it was clarified that the robots are required to run freely on the floor located below the exit of the penetration pipe and run freely on the inclined surface located below the exit of the pipe. This document describes two test procedures for performance evaluation of the robot connected with the cable such as running on the floor after being deployed through a penetration pipe and running on the inclined surface after being deployed through a penetration pipe. Typical course layout and the demonstration of test running are also illustrated for the references.

Journal Articles

Observation of vibration characteristics of a cylindrical water tank by a phase-shifted optical pulse interference sensor

Morishita, Hideki*; Yoshida, Minoru*; Nishimura, Akihiko; Matsudaira, Masayuki*; Hirayama, Yoshiharu*; Sugano, Yuichi*

Hozengaku, 20(1), p.101 - 108, 2021/04

no abstracts in English

JAEA Reports

HAIROWorldPlugin operation manual

Suzuki, Kenta; Abe, Fumiaki; Yashiro, Hiroshi; Kawabata, Kuniaki

JAEA-Testing 2020-009, 254 Pages, 2021/03

JAEA-Testing-2020-009.pdf:18.61MB

This report is the user manual of HAIROWorldPlugin for Choreonoid. Our motivation is to develop a robot simulator based on Choreonoid for technological development to contribute the decommissioning work at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings, Inc. Choreonoid is an open source simulator which calculates the behavior of robots. The plugin is an extended function of Choreonoid which provides simulated behavior and phenomenon related to decommissioning tasks utilizing remotely operated robots. In particular, we developed additional functionalities for simulating the behavior of an underwater swimming robot, the behavior of an unmanned aerial vehicle robot, low visibility camera images, network communication failures, etc., and packaged these in the plugin. This report describes the installation of the plugin to Choreonoid on Ubuntu18.04-LTS and parameter settings of the plugin by presenting snapshots of operation windows.

JAEA Reports

Test methods for robots for nuclear emergency response and decommissioning; Tests for running performances of robots (JAEA-TM-0001, JAEA-TM-0002 and JAEA-TM-0003)

Kawabata, Kuniaki; Yamada, Taichi; Abe, Hiroyuki*

JAEA-Technology 2020-015, 37 Pages, 2020/11

JAEA-Technology-2020-015.pdf:3.81MB

This report describes the test procedures for evaluating running performances of remotely operated robot utilized for nuclear emergency responses and decommissioning. After the accident at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company Holdings Inc. (FDNPS) occurred, remotely operated robots have been deployed and utilized in the response tasks. Such post-accident work experience and lessons learned are very valuable for developing the robots in the future. Therefore, we were motivated to develop the test methods for performance evaluation of the robot by referring with such experiences and lessons. Based on our examinations, in order to execute the response and decommissioning tasks, the robots are required to run through the space without enough margin and avoiding collisions, to move on stairs while avoiding tumbling or falling down and to drag a cable while avoiding problems caused by the cable entwining around objects. This report describes three test procedures for quantitatively evaluating the performances which are for running narrow passage, climbing up/down on the stairs and running with dragging the cable. Typical course layout and the demonstration of test running are also illustrated for the references.

Journal Articles

Toward technological contributions to remote operations in the decommissioning of the Fukushima Daiichi Nuclear Power Station

Kawabata, Kuniaki

Japanese Journal of Applied Physics, 59(5), p.050501_1 - 050501_9, 2020/05

 Times Cited Count:11 Percentile:18.54(Physics, Applied)

This paper describes the decommissioning work being undertaken at the Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company Holdings Inc.'s (FDNPS) using remote controlled robotic systems, as well as lessons learned from past remote task executions. We also summarize the issues to be considered in promoting safe, steady, and efficient decommissioning based on past experiences. In response to these issues, we are developing test methods for performance evaluation of the robots for nuclear decommissioning, robot simulator for operator proficiency training, and information generation methods to improve the operator's status awareness. The current status of technological development is also described.

JAEA Reports

Influence factors on temperature behavior of robot test pool

Arakawa, Ryoki; Nosaki, Nobuhisa

JAEA-Technology 2019-018, 157 Pages, 2020/03

JAEA-Technology-2019-018.pdf:12.97MB

The Naraha Center for Remote Control Technology Development has various test facilities for the decommissioning work after the accident of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, and is now promoting external use. In the test facilities, the robot test pool for the underwater robot can be used in different temperature conditions from room temperature to 60$$^{circ}$$C, maximum setting temperature. In order to clarify the temperature behavior in heating condition, a heating test from room temperature to 60$$^{circ}$$C was performed. The data was obtained this way. From the data, a heat transfer model for evaluating the temperature behavior was investigated, and the temperature evaluation method for the robot test pool was developed. By using the developed evaluation method, the influence of various factors such as flow rate and humidity on the temperature behavior was investigated for the condition of temperature heating, holding (test condition) and cooling. From the investigation, the temperature behavior of the robot test pool was analytically clarified, and a reasonable operation method was proposed. This report summarizes the results of analytical study at the temperature heating, holding and cooling condition.

Journal Articles

Laser cutting technology of thick steel components; Advanced technology developed at the era of decommissioning

Tamura, Koji*; Toyama, Shinichi

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 61(5), p.413 - 415, 2019/05

In decommissioning of nuclear reactors, it is necessary to disassemble the nuclear reactor structure. In addition to the conventional cutting method, the laser method has many advantages such as remote controllability and no need for replacement parts such as blades, which can be a powerful choice. Nuclear reactor structure such as a pressure vessel are made of steel materials with a thickness exceeding 100 mm, and the laser method has poor knowledge and experience in cutting such thick steel materials. Therefore, as a result of trial cutting of steel materials under various cutting conditions with the high power fiber laser which is progressively available nowadays, it has been demonstrated that laser cutting is also possible for thick plates such as those used in nuclear reactors, and cutting of thick steel plates. We also developed the cutting technology using remote control using a robot in order to apply it to the decommissioning of thick steel cutting on the spot.

Journal Articles

Support for the development of remote sensing robotic system using a water tank installed in the Naraha Remote Technology Development Center

Nishimura, Akihiko; Yoshida, Minoru*; Yamada, Tomonori; Arakawa, Ryoki

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 3 Pages, 2019/05

JAEA support the development of remote sensing robotic system in the Naraha Remote Technology Development Center. A water tank is used as a mockup facility of nuclear reactor vessel. A compact seismic vibrometer based on an optical fiber interferometer is applied. A specially designed robotic system is also tested for installing the sensor unit. The experiment is prepared to clarify the transfer function of the water tank, using vibration noise of ground motion.

JAEA Reports

Training programs of emergency response robots operation for operators in each site of JAEA beginner class / intermediate class

Chiba, Yusuke; Nishiyama, Yutaka; Tsubaki, Hirohiko; Iwai, Masaki

JAEA-Technology 2019-002, 29 Pages, 2019/03

JAEA-Technology-2019-002.pdf:2.43MB

Act on Special Measures Concerning Nuclear Emergency Preparedness was amended on the 30th of October in 2017. As the JAEA Emergency Assistance Organization, Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development started training for emergency response robots operation for operators in each site of JAEA in response to the new amendment. The training consists of three operations: small crawler-type mobile scouting robots, big crawler-type mobile robots with a manipulator or a long tong and small radio-controlled helicopters. The training has three classes (beginner, intermediate and advanced classes) depending on skills and experiences. This paper reports the training programs of emergency response robots operation of the beginner and intermediate classes which were used in the first half of fiscal 2018.

JAEA Reports

Development of temperature evaluation method for robot test pool

Arakawa, Ryoki; Nosaki, Nobuhisa

JAEA-Technology 2018-013, 51 Pages, 2019/02

JAEA-Technology-2018-013.pdf:7.75MB

The Naraha Center for Remote Control Technology Development has various test facilities for the decommissioning work after the accident of the Fukushima Daiichi Nuclear Power Station, TEPCO Holdings, and is now promoting external use. In the test facilities, the robot test pool for the underwater robot can be used in different temperature conditions from room temperature to 60$$^{circ}$$C, maximum setting temperature. In order to clarify the temperature behavior in heating condition, a heating test from room temperature to 60$$^{circ}$$C was performed, and obtained the data. From the obtained temperature data, a heat transfer model for evaluating the temperature behavior was investigated, and the temperature evaluation method for the robot test pool was developed. This report summarizes the developed heat transfer model, and also summarizes the temperature evaluation method during heating and cooling conditions. Moreover, user's manual for the temperature evaluation code was also created.

JAEA Reports

Heating test of robot test pool

Arakawa, Ryoki; Nosaki, Nobuhisa; Hirata, Yuji*

JAEA-Technology 2018-009, 28 Pages, 2019/01

JAEA-Technology-2018-009.pdf:2.94MB

The Naraha Center for Remote Control Technology Development consists of a mock-up test building and a research management building, and various test facilities are installed in them for the decommissioning work after the accident of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings. In the test facilities, the robot test pool for the underwater robot can be tested under temperature conditions raised from room temperature to 60$$^{circ}$$C. Then, for the purpose of grasping the temperature distribution inside of the pool and the temperature rising behavior in temperature raising condition, a temperature heating test with room temperature to 60$$^{circ}$$C. (maximum setting temperature) was performed, and as well as an analytical study was performed. This report summarizes the obtained both experimental and analytical studies.

Journal Articles

Naraha Center for Remote Control Technology Development; Enhancement of remote control technology for nuclear decommissioning

Kawabata, Kuniaki

Nihon Robotto Gakkai-Shi, 36(7), p.460 - 463, 2018/09

no abstracts in English

Journal Articles

Development of an altitude-keeping system for underwater robots using laser beams

Takemura, Fumiaki*; Taba, Ryo*; Hirayama, Keita*; Tansuriyavong, S.*; Kawabata, Kuniaki; Sagara, Shinichi*; Ogasawara, Kei*

Artificial Life and Robotics, 22(4), p.405 - 411, 2017/12

The manta method is a survey method that divers investigate the degree of coral and whitening state while being towed to a boat. The manta method makes great physical burden. Therefore, the authors think that this task can substitute an underwater robot. This underwater robot is desirable to be able to keep altitude above the seabed. Hence, the authors have been developing the altitude (its distance above the sea floor) keeping system for an underwater robot. Visual recognition of distant underwater objects is possible in the water with high transparency, for example, in the coastal sea area of Okinawa prefecture, Japan. So, the authors have been adopting the distance measuring method using the two laser beams and a monocular camera with image processing. It realize to keep altitude of an underwater robot by using such devices. The evaluation experiments of the altitude keeping system are carried out in the pool.

Journal Articles

Development of a robot simulation system for remotely operated robots for operator proficiency training and robot performance verification

Kawabata, Kuniaki; Suzuki, Kenta; Isowa, Mitsuru*; Horiuchi, Kazunori; Ito, Rintaro

Proceedings of 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2017) (USB Flash Drive), p.561 - 564, 2017/06

This paper describes the current status of the development of a simulation system for remotely operated robots. The system will be used for operator proficiency training and robot performance verification. Our purpose for developing this system is to contribute to decommissioning of the Fukushima Daiichi Nuclear Power Station (FDNPS). The simulator system was designed using Choreonoid, a simulator development tool. The effects of view disturbances, communication failures, and so on are extended functions that are implemented on the simulator. The effects of water submergence on the physical behavior of underwater robots are also implemented. In this paper, we introduce the prototype of the robotic simulator system with the newly implemented extended functions. Some examples of system output are shown.

Journal Articles

Full operation of JAEA Naraha Remote Technology Development Center

Daido, Hiroyuki

Hozengaku, 15(3), p.20 - 25, 2016/10

Naraha Remote Technology Development Center is open for various users to contribute to recovery of the coast area of Fukushima as well as the decommissioning of Fukushima Daiichi Nuclear Power Station. The center is located within a distance of 20 km from the Fukushima Daiichi station. This is the first development center funded by the Government near the Fukushima Daiichi. Many people expect that the center plays a significant role to contribute to the decommissioning of Fukushima Daiichi and recovery of Fukushima area from the hazards. The author describe details of the facility and our plan.

99 (Records 1-20 displayed on this page)